Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
2.
Br J Clin Pharmacol ; 2020 Nov 20.
Article in English | MEDLINE | ID: covidwho-2244517
3.
Front Med (Lausanne) ; 9: 956123, 2022.
Article in English | MEDLINE | ID: covidwho-2224822

ABSTRACT

Background: The nitazoxanide plus atazanavir/ritonavir for COVID-19 (NACOVID) trial investigated the efficacy and safety of repurposed nitazoxanide combined with atazanavir/ritonavir for COVID-19. Methods: This is a pilot, randomized, open-label multicenter trial conducted in Nigeria. Mild to moderate COVID-19 patients were randomly assigned to receive standard of care (SoC) or SoC plus a 14-day course of nitazoxanide (1,000 mg b.i.d.) and atazanavir/ritonavir (300/100 mg od) and followed through day 28. Study endpoints included time to clinical improvement, SARS-CoV-2 viral load change, and time to complete symptom resolution. Safety and pharmacokinetics were also evaluated (ClinicalTrials.gov ID: NCT04459286). Results: There was no difference in time to clinical improvement between the SoC (n = 26) and SoC plus intervention arms (n = 31; Cox proportional hazards regression analysis adjusted hazard ratio, aHR = 0.898, 95% CI: 0.492-1.638, p = 0.725). No difference was observed in the pattern of saliva SARS-CoV-2 viral load changes from days 2-28 in the 35% of patients with detectable virus at baseline (20/57) (aHR = 0.948, 95% CI: 0.341-2.636, p = 0.919). There was no significant difference in time to complete symptom resolution (aHR = 0.535, 95% CI: 0.251-1.140, p = 0.105). Atazanavir/ritonavir increased tizoxanide plasma exposure by 68% and median trough plasma concentration was 1,546 ng/ml (95% CI: 797-2,557), above its putative EC90 in 54% of patients. Tizoxanide was undetectable in saliva. Conclusion: Nitazoxanide co-administered with atazanavir/ritonavir was safe but not better than standard of care in treating COVID-19. These findings should be interpreted in the context of incomplete enrollment (64%) and the limited number of patients with detectable SARS-CoV-2 in saliva at baseline in this trial. Clinical trial registration: [https://clinicaltrials.gov/ct2/show/NCT04459286], identifier [NCT04459286].

5.
EBioMedicine ; 86: 104322, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2095268

ABSTRACT

BACKGROUND: This exploratory study investigated four repurposed anti-infective drug regimens in outpatients with COVID-19. METHODS: This phase 2, single centre, randomised, open-label, clinical trial was conducted in South Africa between 3rd September 2020 and 23rd August 2021. Symptomatic outpatients aged 18-65 years, with RT-PCR confirmed SARS-CoV-2 infection were computer randomised (1:1:1:1:1) to standard-of-care (SOC) with paracetamol, or SOC plus artesunate-amodiaquine (ASAQ), pyronaridine-artesunate (PA), favipiravir plus nitazoxanide (FPV + NTZ), or sofosbuvir-daclatasvir (SOF-DCV). The primary endpoint was the incidence of viral clearance, i.e., the proportion of patients with a negative SARS-CoV-2 RT-PCR on day 7, compared to SOC using a log-binomial model in the modified intention-to-treat (mITT) population. FINDINGS: The mITT population included 186 patients: mean age (SD) 34.9 (10.3) years, body weight 78.2 (17.1) kg. Day 7 SARS-CoV-2 clearance rates (n/N; risk ratio [95% CI]) were: SOC 34.2% (13/38), ASAQ 38.5% (15/39; 0.80 [0.44, 1.47]), PA 30.3% (10/33; 0.69 [0.37, 1.29]), FPV + NTZ 27.0% (10/37; 0.60 [0.31, 1.18]) and SOF-DCV 23.5% (8/34; 0.47 [0.22, 1.00]). Three lower respiratory tract infections occurred (PA 6.1% [2/33]; SOF-DCV 2.9% [1/34]); two required hospitalisation (PA, SOF-DCV). There were no deaths. Adverse events occurred in 55.3% (105/190) of patients, including one serious adverse event (pancytopenia; FPV + NTZ). INTERPRETATION: There was no statistical difference in viral clearance for any regimen compared to SOC. All treatments were well tolerated. FUNDING: Medicines for Malaria Venture, with funding from the UK Foreign, Commonwealth and Development Office, within the Covid-19 Therapeutics Accelerator in partnership with Wellcome, the Bill and Melinda Gates Foundation, and Mastercard.

7.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-2045486

ABSTRACT

Background The nitazoxanide plus atazanavir/ritonavir for COVID-19 (NACOVID) trial investigated the efficacy and safety of repurposed nitazoxanide combined with atazanavir/ritonavir for COVID-19. Methods This is a pilot, randomized, open-label multicenter trial conducted in Nigeria. Mild to moderate COVID-19 patients were randomly assigned to receive standard of care (SoC) or SoC plus a 14-day course of nitazoxanide (1,000 mg b.i.d.) and atazanavir/ritonavir (300/100 mg od) and followed through day 28. Study endpoints included time to clinical improvement, SARS-CoV-2 viral load change, and time to complete symptom resolution. Safety and pharmacokinetics were also evaluated (ClinicalTrials.gov ID: NCT04459286). Results There was no difference in time to clinical improvement between the SoC (n = 26) and SoC plus intervention arms (n = 31;Cox proportional hazards regression analysis adjusted hazard ratio, aHR = 0.898, 95% CI: 0.492–1.638, p = 0.725). No difference was observed in the pattern of saliva SARS-CoV-2 viral load changes from days 2–28 in the 35% of patients with detectable virus at baseline (20/57) (aHR = 0.948, 95% CI: 0.341–2.636, p = 0.919). There was no significant difference in time to complete symptom resolution (aHR = 0.535, 95% CI: 0.251–1.140, p = 0.105). Atazanavir/ritonavir increased tizoxanide plasma exposure by 68% and median trough plasma concentration was 1,546 ng/ml (95% CI: 797–2,557), above its putative EC90 in 54% of patients. Tizoxanide was undetectable in saliva. Conclusion Nitazoxanide co-administered with atazanavir/ritonavir was safe but not better than standard of care in treating COVID-19. These findings should be interpreted in the context of incomplete enrollment (64%) and the limited number of patients with detectable SARS-CoV-2 in saliva at baseline in this trial. Clinical trial registration [https://clinicaltrials.gov/ct2/show/NCT04459286], identifier [NCT04459286].

8.
Front Cardiovasc Med ; 9: 854421, 2022.
Article in English | MEDLINE | ID: covidwho-2005852

ABSTRACT

Prolonged critical care stays commonly follow trauma, severe burn injury, sepsis, ARDS, and complications of major surgery. Although patients leave critical care following homeostatic recovery, significant additional diseases affect these patients during and beyond the convalescent phase. New cardiovascular and renal disease is commonly seen and roughly one third of all deaths in the year following discharge from critical care may come from this cluster of diseases. During prolonged critical care stays, the immunometabolic, inflammatory and neurohumoral response to severe illness in conjunction with resuscitative treatments primes the immune system and parenchymal tissues to develop a long-lived pro-inflammatory and immunosenescent state. This state is perpetuated by persistent Toll-like receptor signaling, free radical mediated isolevuglandin protein adduct formation and presentation by antigen presenting cells, abnormal circulating HDL and LDL isoforms, redox and metabolite mediated epigenetic reprogramming of the innate immune arm (trained immunity), and the development of immunosenescence through T-cell exhaustion/anergy through epigenetic modification of the T-cell genome. Under this state, tissue remodeling in the vascular, cardiac, and renal parenchymal beds occurs through the activation of pro-fibrotic cellular signaling pathways, causing vascular dysfunction and atherosclerosis, adverse cardiac remodeling and dysfunction, and proteinuria and accelerated chronic kidney disease.

9.
Emerg Microbes Infect ; 11(1): 2197-2206, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1997028

ABSTRACT

We investigated Favipiravir (FPV) efficacy in mild cases of COVID-19 without pneumonia and its effects towards viral clearance, clinical condition, and risk of COVID-19 pneumonia development. PCR-confirmed SARS-CoV-2-infected patients without pneumonia were enrolled (2:1) within 10 days of symptomatic onset into FPV and control arms. The former received 1800 mg FPV twice-daily (BID) on Day 1 and 800 mg BID 5-14 days thereafter until negative viral detection, while the latter received only supportive care. The primary endpoint was time to clinical improvement, defined by a National Early Warning Score (NEWS) of ≤1. 62 patients (41 female) comprised the FPV arm (median age: 32 years, median BMI: 22 kg/m²) and 31 patients (19 female) comprised the control arm (median age: 28 years, median BMI: 22 kg/m²). The median time to sustained clinical improvement, by NEWS, was 2 and 14 days for FPV and control arms, respectively (adjusted hazard ratio (aHR) of 2.77, 95% CI 1.57-4.88, P < .001). The FPV arm also had significantly higher likelihoods of clinical improvement within 14 days after enrolment by NEWS (79% vs. 32% respectively, P < .001). 8 (12.9%) and 7 (22.6%) patients in FPV and control arms developed mild pneumonia at a median (range) of 6.5 (1-13) and 7 (1-13) days after treatment, respectively (P = .316). All recovered well without complications. We can conclude that early treatment of FPV in symptomatic COVID-19 patients without pneumonia was associated with faster clinical improvement.Trial registration: Thai Clinical Trials Registry identifier: TCTR20200514001.


Subject(s)
COVID-19 Drug Treatment , Adult , Amides/therapeutic use , Antiviral Agents/therapeutic use , Female , Humans , Pyrazines/therapeutic use , SARS-CoV-2 , Treatment Outcome
10.
J Antimicrob Chemother ; 77(10): 2706-2712, 2022 09 30.
Article in English | MEDLINE | ID: covidwho-1992221

ABSTRACT

BACKGROUND: The COVER trial evaluated whether nitazoxanide or sofosbuvir/daclatasvir could lower the risk of SARS-CoV-2 infection. Nitazoxanide was selected given its favourable pharmacokinetics and in vitro antiviral effects against SARS-CoV-2. Sofosbuvir/daclatasvir had shown favourable results in early clinical trials. METHODS: In this clinical trial in Johannesburg, South Africa, healthcare workers and others at high risk of infection were randomized to 24 weeks of either nitazoxanide or sofosbuvir/daclatasvir as prevention, or standard prevention advice only. Participants were evaluated every 4 weeks for COVID-19 symptoms and had antibody and PCR testing. The primary endpoint was positive SARS-CoV-2 PCR and/or serology ≥7 days after randomization, regardless of symptoms. A Poisson regression model was used to estimate the incidence rate ratios of confirmed SARS-CoV-2 between each experimental arm and control. RESULTS: Between December 2020 and January 2022, 828 participants were enrolled. COVID-19 infections were confirmed in 100 participants on nitazoxanide (2234 per 1000 person-years; 95% CI 1837-2718), 87 on sofosbuvir/daclatasvir (2125 per 1000 person-years; 95% CI 1722-2622) and 111 in the control arm (1849 per 1000 person-years; 95% CI 1535-2227). There were no significant differences in the primary endpoint between the treatment arms, and the results met the criteria for futility. In the safety analysis, the frequency of grade 3 or 4 adverse events was low and similar across arms. CONCLUSIONS: In this randomized trial, nitazoxanide and sofosbuvir/daclatasvir had no significant preventative effect on infection with SARS-CoV-2 among healthcare workers and others at high risk of infection.


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Carbamates , Humans , Imidazoles , Nitro Compounds , Pyrrolidines , SARS-CoV-2 , Sofosbuvir/therapeutic use , South Africa , Thiazoles , Treatment Outcome , Valine/analogs & derivatives
11.
Microorganisms ; 10(8)2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-1987897

ABSTRACT

In the absence of drugs to treat or prevent COVID-19, drug repurposing can be a valuable strategy. Despite a substantial number of clinical trials, drug repurposing did not deliver on its promise. While success was observed with some repurposed drugs (e.g., remdesivir, dexamethasone, tocilizumab, baricitinib), others failed to show clinical efficacy. One reason is the lack of clear translational processes based on adequate preclinical profiling before clinical evaluation. Combined with limitations of existing in vitro and in vivo models, there is a need for a systematic approach to urgent antiviral drug development in the context of a global pandemic. We implemented a methodology to test repurposed and experimental drugs to generate robust preclinical evidence for further clinical development. This translational drug development platform comprises in vitro, ex vivo, and in vivo models of SARS-CoV-2, along with pharmacokinetic modeling and simulation approaches to evaluate exposure levels in plasma and target organs. Here, we provide examples of identified repurposed antiviral drugs tested within our multidisciplinary collaboration to highlight lessons learned in urgent antiviral drug development during the COVID-19 pandemic. Our data confirm the importance of assessing in vitro and in vivo potency in multiple assays to boost the translatability of pre-clinical data. The value of pharmacokinetic modeling and simulations for compound prioritization is also discussed. We advocate the need for a standardized translational drug development platform for mild-to-moderate COVID-19 to generate preclinical evidence in support of clinical trials. We propose clear prerequisites for progression of drug candidates for repurposing into clinical trials. Further research is needed to gain a deeper understanding of the scope and limitations of the presented translational drug development platform.

12.
Trials ; 23(1): 583, 2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-1957067

ABSTRACT

BACKGROUND: The 2020 pandemic of SARS-CoV-2 causing COVID-19 disease is an unprecedented global emergency. COVID-19 appears to be a disease with an early phase where the virus replicates, coinciding with the first presentation of symptoms, followed by a later 'inflammatory' phase which results in severe disease in some individuals. It is known from other rapidly progressive infections such as sepsis and influenza that early treatment with antimicrobials is associated with a better outcome. The hypothesis is that this holds for COVID-19 and that early antiviral treatment may prevent progression to the later phase of the disease. METHODS: Trial design: Phase IIA randomised, double-blind, 2 × 2 design, placebo-controlled, interventional trial. RANDOMISATION: Participants will be randomised 1:1 by stratification, with the following factors: gender, obesity, symptomatic or asymptomatic, current smoking status presence or absence of comorbidity, and if the participant has or has not been vaccinated. BLINDING: Participants and investigators will both be blinded to treatment allocation (double-blind). DISCUSSION: We propose to conduct a proof-of-principle placebo-controlled clinical trial of favipiravir plus or minus nitazoxanide in health workers, their household members and patients treated at the Mexican Social Security Institute (IMSS) facilities. Participants with or without symptomatic COVID-19 or who tested positive will be assigned to receive favipiravir plus nitazoxanide or favipiravir plus nitazoxanide placebo. The primary outcome will be the difference in the amount of virus ('viral load') in the upper respiratory tract after 5 days of therapy. Secondary outcomes will include hospitalization, major morbidity and mortality, pharmacokinetics, and impact of antiviral therapy on viral genetic mutation rate. If favipiravir with nitazoxanide demonstrates important antiviral effects without significant toxicity, there will be a strong case for a larger trial in people at high risk of hospitalization or intensive care admission, for example older patients and/or those with comorbidities and with early disease. TRIAL REGISTRATION: ClinicalTrials.gov NCT04918927 . Registered on June 9, 2021.


Subject(s)
COVID-19 Drug Treatment , Amides , Antiviral Agents/adverse effects , Humans , Nitro Compounds , Pyrazines , SARS-CoV-2 , Secondary Prevention , Thiazoles , Treatment Outcome
13.
EBioMedicine ; 76: 103856, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1894987

ABSTRACT

BACKGROUND: Many repurposed drugs have progressed rapidly to Phase 2 and 3 trials in COVID19 without characterisation of Pharmacokinetics /Pharmacodynamics including safety data. One such drug is nafamostat mesylate. METHODS: We present the findings of a phase Ib/IIa open label, platform randomised controlled trial of intravenous nafamostat in hospitalised patients with confirmed COVID-19 pneumonitis. Patients were assigned randomly to standard of care (SoC), nafamostat or an alternative therapy. Nafamostat was administered as an intravenous infusion at a dose of 0.2 mg/kg/h for a maximum of seven days. The analysis population included those who received any dose of the trial drug and all patients randomised to SoC. The primary outcomes of our trial were the safety and tolerability of intravenous nafamostat as an add on therapy for patients hospitalised with COVID-19 pneumonitis. FINDINGS: Data is reported from 42 patients, 21 of which were randomly assigned to receive intravenous nafamostat. 86% of nafamostat-treated patients experienced at least one AE compared to 57% of the SoC group. The nafamostat group were significantly more likely to experience at least one AE (posterior mean odds ratio 5.17, 95% credible interval (CI) 1.10 - 26.05) and developed significantly higher plasma creatinine levels (posterior mean difference 10.57 micromol/L, 95% CI 2.43-18.92). An average longer hospital stay was observed in nafamostat patients, alongside a lower rate of oxygen free days (rate ratio 0.55-95% CI 0.31-0.99, respectively). There were no other statistically significant differences in endpoints between nafamostat and SoC. PK data demonstrated that intravenous nafamostat was rapidly broken down to inactive metabolites. We observed no significant anticoagulant effects in thromboelastometry. INTERPRETATION: In hospitalised patients with COVID-19, we did not observe evidence of anti-inflammatory, anticoagulant or antiviral activity with intravenous nafamostat, and there were additional adverse events. FUNDING: DEFINE was funded by LifeArc (an independent medical research charity) under the STOPCOVID award to the University of Edinburgh. We also thank the Oxford University COVID-19 Research Response Fund (BRD00230).


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Benzamidines/therapeutic use , COVID-19 Drug Treatment , Guanidines/therapeutic use , Administration, Intravenous , Adult , Aged , Aged, 80 and over , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Benzamidines/adverse effects , Benzamidines/pharmacokinetics , Biomarkers/blood , Biomarkers/metabolism , COVID-19/mortality , COVID-19/virology , Drug Administration Schedule , Female , Guanidines/adverse effects , Guanidines/pharmacokinetics , Half-Life , Humans , Immunophenotyping , Kaplan-Meier Estimate , Male , Middle Aged , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Treatment Outcome , Viral Load
14.
Viruses ; 14(5)2022 05 11.
Article in English | MEDLINE | ID: covidwho-1869805

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) not only affects the respiratory tract but also causes neurological symptoms such as loss of smell and taste, headache, fatigue or severe cerebrovascular complications. Using transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2), we investigated the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with SARS-CoV-2 variants, as well as after prior influenza A virus infection. Apart from Omicron, we found all variants to frequently spread to and within the CNS. Infection was restricted to neurons and appeared to spread from the olfactory bulb mainly in basally oriented regions in the brain and into the spinal cord, independent of ACE2 expression and without evidence of neuronal cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed, accompanied by apoptotic death of endothelial, microglial and immune cells, without their apparent infection. Microgliosis and immune cell apoptosis indicate a potential role of microglia for pathogenesis and viral effect in COVID-19 and the possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates and broadly support the investigation of agents with adequate penetration into relevant regions of the CNS.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Central Nervous System , Viral Tropism , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/complications , Central Nervous System/physiopathology , Central Nervous System/virology , Humans , Mice , Mice, Transgenic , SARS-CoV-2/genetics , Post-Acute COVID-19 Syndrome
15.
Viruses ; 14(2)2022 02 11.
Article in English | MEDLINE | ID: covidwho-1687050

ABSTRACT

Despite the development of specific therapies against severe acute respiratory coronavirus 2 (SARS-CoV-2), the continuous investigation of the mechanism of action of clinically approved drugs could provide new information on the druggable steps of virus-host interaction. For example, chloroquine (CQ)/hydroxychloroquine (HCQ) lacks in vitro activity against SARS-CoV-2 in TMPRSS2-expressing cells, such as human pneumocyte cell line Calu-3, and likewise, failed to show clinical benefit in the Solidarity and Recovery clinical trials. Another antimalarial drug, mefloquine, which is not a 4-aminoquinoline like CQ/HCQ, has emerged as a potential anti-SARS-CoV-2 antiviral in vitro and has also been previously repurposed for respiratory diseases. Here, we investigated the anti-SARS-CoV-2 mechanism of action of mefloquine in cells relevant for the physiopathology of COVID-19, such as Calu-3 cells (that recapitulate type II pneumocytes) and monocytes. Molecular pathways modulated by mefloquine were assessed by differential expression analysis, and confirmed by biological assays. A PBPK model was developed to assess mefloquine's optimal doses for achieving therapeutic concentrations. Mefloquine inhibited SARS-CoV-2 replication in Calu-3, with an EC50 of 1.2 µM and EC90 of 5.3 µM. It reduced SARS-CoV-2 RNA levels in monocytes and prevented virus-induced enhancement of IL-6 and TNF-α. Mefloquine reduced SARS-CoV-2 entry and synergized with Remdesivir. Mefloquine's pharmacological parameters are consistent with its plasma exposure in humans and its tissue-to-plasma predicted coefficient points suggesting that mefloquine may accumulate in the lungs. Altogether, our data indicate that mefloquine's chemical structure could represent an orally available host-acting agent to inhibit virus entry.


Subject(s)
Alveolar Epithelial Cells/drug effects , Antiviral Agents/pharmacology , Chloroquine/pharmacology , Mefloquine/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/virology , Cell Line , Drug Repositioning/methods , Humans , Serine Endopeptidases/genetics , Virus Internalization/drug effects , COVID-19 Drug Treatment
16.
Int J Antimicrob Agents ; 59(3): 106542, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1654507

ABSTRACT

A key element for the prevention and management of coronavirus disease 2019 is the development of effective therapeutics. Drug combination strategies offer several advantages over monotherapies. They have the potential to achieve greater efficacy, to increase the therapeutic index of drugs and to reduce the emergence of drug resistance. We assessed the in vitro synergistic interaction between remdesivir and ivermectin, both approved by the US Food and Drug Administration, and demonstrated enhanced antiviral activity against severe acute respiratory syndrome coronavirus-2. Whilst the in vitro synergistic activity reported here does not support the clinical application of this combination treatment strategy due to insufficient exposure of ivermectin in vivo, the data do warrant further investigation. Efforts to define the mechanisms underpinning the observed synergistic action could lead to the development of novel treatment strategies.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Ivermectin/pharmacology , Ivermectin/therapeutic use
17.
Clin Pharmacol Ther ; 111(3): 585-594, 2022 03.
Article in English | MEDLINE | ID: covidwho-1482119

ABSTRACT

Repurposing approved drugs may rapidly establish effective interventions during a public health crisis. This has yielded immunomodulatory treatments for severe coronavirus disease 2019 (COVID-19), but repurposed antivirals have not been successful to date because of redundancy of the target in vivo or suboptimal exposures at studied doses. Nitazoxanide is a US Food and Drug Administration (FDA) approved antiparasitic medicine, that physiologically-based pharmacokinetic (PBPK) modeling has indicated may provide antiviral concentrations across the dosing interval, when repurposed at higher than approved doses. Within the AGILE trial platform (NCT04746183) an open label, adaptive, phase I trial in healthy adult participants was undertaken with high-dose nitazoxanide. Participants received 1,500 mg nitazoxanide orally twice-daily with food for 7 days. Primary outcomes were safety, tolerability, optimum dose, and schedule. Intensive pharmacokinetic (PK) sampling was undertaken day 1 and 5 with minimum concentration (Cmin ) sampling on days 3 and 7. Fourteen healthy participants were enrolled between February 18 and May 11, 2021. All 14 doses were completed by 10 of 14 participants. Nitazoxanide was safe and with no significant adverse events. Moderate gastrointestinal disturbance (loose stools or diarrhea) occurred in 8 participants (57.1%), with urine and sclera discoloration in 12 (85.7%) and 9 (64.3%) participants, respectively, without clinically significant bilirubin elevation. This was self-limiting and resolved upon drug discontinuation. PBPK predictions were confirmed on day 1 but with underprediction at day 5. Median Cmin was above the in vitro target concentration on the first dose and maintained throughout. Nitazoxanide administered at 1,500 mg b.i.d. with food was safe with acceptable tolerability a phase Ib/IIa study is now being initiated in patients with COVID-19.


Subject(s)
Antiviral Agents/administration & dosage , Nitro Compounds/administration & dosage , Nitro Compounds/adverse effects , Nitro Compounds/pharmacokinetics , Thiazoles/administration & dosage , Thiazoles/adverse effects , Thiazoles/pharmacokinetics , Adult , Antiviral Agents/adverse effects , Antiviral Agents/pharmacokinetics , Drug Repositioning , Female , Healthy Volunteers , Humans , Male , Middle Aged , Young Adult , COVID-19 Drug Treatment
18.
Nat Commun ; 12(1): 5469, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434103

ABSTRACT

SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately, effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19 Drug Treatment , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Administration, Intranasal , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Cryoelectron Microscopy , Crystallography, X-Ray , Disease Models, Animal , Dose-Response Relationship, Immunologic , Epitopes/chemistry , Epitopes/metabolism , Female , Male , Mesocricetus , Neutralization Tests , SARS-CoV-2/drug effects , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/chemistry
19.
Clin Pharmacol Ther ; 108(4): 775-790, 2020 10.
Article in English | MEDLINE | ID: covidwho-1384148

ABSTRACT

There is a rapidly expanding literature on the in vitro antiviral activity of drugs that may be repurposed for therapy or chemoprophylaxis against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). However, this has not been accompanied by a comprehensive evaluation of the target plasma and lung concentrations of these drugs following approved dosing in humans. Accordingly, concentration 90% (EC90 ) values recalculated from in vitro anti-SARS-CoV-2 activity data was expressed as a ratio to the achievable maximum plasma concentration (Cmax ) at an approved dose in humans (Cmax /EC90 ratio). Only 14 of the 56 analyzed drugs achieved a Cmax /EC90 ratio above 1. A more in-depth assessment demonstrated that only nitazoxanide, nelfinavir, tipranavir (ritonavir-boosted), and sulfadoxine achieved plasma concentrations above their reported anti-SARS-CoV-2 activity across their entire approved dosing interval. An unbound lung to plasma tissue partition coefficient (Kp Ulung ) was also simulated to derive a lung Cmax /half-maximal effective concentration (EC50 ) as a better indicator of potential human efficacy. Hydroxychloroquine, chloroquine, mefloquine, atazanavir (ritonavir-boosted), tipranavir (ritonavir-boosted), ivermectin, azithromycin, and lopinavir (ritonavir-boosted) were all predicted to achieve lung concentrations over 10-fold higher than their reported EC50 . Nitazoxanide and sulfadoxine also exceeded their reported EC50 by 7.8-fold and 1.5-fold in lung, respectively. This analysis may be used to select potential candidates for further clinical testing, while deprioritizing compounds unlikely to attain target concentrations for antiviral activity. Future studies should focus on EC90 values and discuss findings in the context of achievable exposures in humans, especially within target compartments, such as the lungs, in order to maximize the potential for success of proposed human clinical trials.


Subject(s)
Antiviral Agents/administration & dosage , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drug Delivery Systems/methods , Drug Repositioning/methods , Pneumonia, Viral/drug therapy , Antiviral Agents/blood , COVID-19 , Coronavirus Infections/blood , Humans , Pandemics , Pneumonia, Viral/blood , SARS-CoV-2
20.
J Antimicrob Chemother ; 76(12): 3286-3295, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1376308

ABSTRACT

OBJECTIVES: AGILE is a Phase Ib/IIa platform for rapidly evaluating COVID-19 treatments. In this trial (NCT04746183) we evaluated the safety and optimal dose of molnupiravir in participants with early symptomatic infection. METHODS: We undertook a dose-escalating, open-label, randomized-controlled (standard-of-care) Bayesian adaptive Phase I trial at the Royal Liverpool and Broadgreen Clinical Research Facility. Participants (adult outpatients with PCR-confirmed SARS-CoV-2 infection within 5 days of symptom onset) were randomized 2:1 in groups of 6 participants to 300, 600 and 800 mg doses of molnupiravir orally, twice daily for 5 days or control. A dose was judged unsafe if the probability of 30% or greater dose-limiting toxicity (the primary outcome) over controls was 25% or greater. Secondary outcomes included safety, clinical progression, pharmacokinetics and virological responses. RESULTS: Of 103 participants screened, 18 participants were enrolled between 17 July and 30 October 2020. Molnupiravir was well tolerated at 300, 600 and 800 mg doses with no serious or severe adverse events. Overall, 4 of 4 (100%), 4 of 4 (100%) and 1 of 4 (25%) of the participants receiving 300, 600 and 800 mg molnupiravir, respectively, and 5 of 6 (83%) controls, had at least one adverse event, all of which were mild (≤grade 2). The probability of ≥30% excess toxicity over controls at 800 mg was estimated at 0.9%. CONCLUSIONS: Molnupiravir was safe and well tolerated; a dose of 800 mg twice daily for 5 days was recommended for Phase II evaluation.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Bayes Theorem , Humans , Research Design , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL